

DATA SHEET Hall Effect Current Sensor

P/N: FSM200L2F

 $I_{PN}=\pm 200A$

Feature

- Closed- loop (compensated) current transducer
- Supply voltage: DC \pm 12~15V
- Capable measurement of currents: DC, AC, pulse with galvanic isolation between primary circuit and secondary circuit.

Advantages

- High accuracy
- Low temperature drift
- Optimized response time
- Very good linearity
- High immunity to external interference

Applications

- The application of variable frequency electrical appliances
- AC/DC variable-speed drive
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- The applications of inverter

Electrical data: (Ta=25°C, Vc=±15VDC)				
Parameter Ref		FSM200L2F		
Rated input IPN(A)		± 200		
Measuring range IP(A)		0 ~ ±500		
Turns ratio NP/NS (T)		1: 2000		
Output current Is (mA)		$\pm 100*I_P/I_{PN}$		
Secondary coil resistance $R_S(\Omega)$	@ T _A =+ 25°C	21.0		
	@ T _A =+ 85°C	25.0		
Inside resistance $R_M(\Omega)$	@ T _A =+ 85°C	$[(V_C-0.6V)/(I_S*0.001)]-R_S$	max	
Supply voltage V _C (V)		$(\pm 12 \sim \pm 15) \pm 5\%$		
Accuracy X _G (%)	@I _{PN} ,T=25°C	< ±0.5		
Offset current I _{OE} (mA)	$@I_P=0,T=25^{\circ}C$	<±0.2		
Temperature variation of I _{OE} (mA)	@ I_P =0,-40 ~ +85°C	TYP< ± 0.12 MAX< ± 0.40		
Magnetic offset current I _{OH} (mA)	@I _P =0→3*I _{PN}	<±0.1		
Linearity error εr(%FS)		< 0.1		
Di/dt accurately followed (A/μs)		> 100		
Response time tra(µs)	@90% of I _{PN}	< 1.0	-	
Power consumption I _C (mA)	@±15V	17+Is		

Bandwidth BW (KHZ)	@-3dB, IPN	DC-100	
Insulation voltage Vd(KV)	@50/60Hz, 1min, AC	6.0	

General data:			
Parameter	Value		
Operating temperature T _A (°C)	- 40 ∼ +85		
Storage temperature $T_S(^{\circ}C)$	- 55∼ +125		
Mass M(g)	78		
Plastic material	PBT G30/G15, UL94- V0;		
Standards	IEC60950-1:2001		
	EN50178:1998		
	SJ20790-2000		

Remarks:

- When the current goes through the primary pin of a sensor, the voltage will be measured at the output end.
- Custom design is available for the different rated input current and the output voltage.
- > The dynamic performance is the best when the primary hole if fully filled with.

WARNING: Incorrect wiring may cause damage to the sensor.