

DATA SHEET Closed-loop Effect Current Sensor

P/N: FSM200LAP

 $I_{PN}=200A$

Feature

- Closed loop (compensated) current transducer using the hall effect
- For the electronic measurement of currents: DC, AC, pulsed,..., with galvanic separation between primary circuit and secondary circuit

• Supply voltage: DC $\pm 12 \sim 15$ V

Advantages

- High accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- High immunity to external interference

Applications

- The application of induction cooker
- AC/DC variable-speed drive
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Inverter applications

ROHS

Electrical data: (Ta=25°C, Vc=±15VDC)				
Parameter Ref	FSM125LAP	FSM200LAP		
Rated input Ipn(A)	125	200		
Measuring range Ip(A)	0~±187.5	0~±300		
Turns ratio Np/Ns (T)	1:1000	1:2000		
Output current rms Is(mA)	$\pm 125*I_P/I_{PN}$	±100*I _P /I _{PN}		
Secondary coil resistance R _S (Ω)	50	76		
	[(Vc-1.2V)/ (Is*0.001)]-Rs			
Inside resistance R_M (Ω)	0.494	@200A 0~30		
	@ ±12V	@250A 0~8		
	@ ±15V	@200A 0~60		
		@300A 0~12		
Supply voltage V _C (V)	(±12~±15) ±5%			
Accuracy X _G (%)	@I _{PN} ,T=25°C <±0.5			
Offset current I _{OE} (mA)	@ $I_P=0,T=25$ °C $<\pm0.15$			
Hysteresis offset current I _{OH} (mA)	$@I_P=0$,after $1*I_{PN}$ $< \pm 0.05$			

Temperature variation of IOE Iot(mA)	@I _P =0,-40 ~ +85°C	<±0.3	
Linearity error εr(%FS)		< 0.15	
Di/dt accurately followed (A/μs)		> 200	
Response time tra(µs)	@90% of I _{PN}	< 1.0	
Power consumption Ic(mA)		16+Is	
Bandwidth BW(kHz)	@-3dB,I _{PN}	DC-100	
Insulation voltage Vd(KV)	@50/60Hz, 1min,AC	3.0	

General data:			
Parameter	Value		
Operating temperature TA(°C)	-40 ~ +85		
Storage temperature TS(°C)	- 55∼ +125		
Mass M(g)	40		
Plastic material	PBT G30/G15, UL94- V0;		
	IEC60950-1:2001		
Standards	EN50178:1998		
	SJ20790-2000		
Internal process	The interior has been treated with three anti-paint		

General tolerance	Connection
General tolerance: < ±1.0mm; According to the drawing tolerance, not marked according to GB/T 1804-2000-M; Primary through-hole dimensions: See the figure above Secondary pin size :4pin 0.64*0.64; Pin is not marked as fixed, no electrical connection;	

Remarks:

- When the current goes through the primary pin of a sensor, the voltage will be measured at the output end. (Note: The false wiring may result in the damage the sensor).
- > Custom design is available for the different rated input current and the output voltage.
- The dynamic performance is the best when the primary hole if fully filled with.
- The primary conductor should be <100°C.

WARNING: Incorrect wiring may cause damage to the sensor.